为了调查某厂2000名工人生产某种产品的能力,随机抽查了位工人某天生产该产品的数量,产品数量的分组区间为, ,,,,频率分布直方图如图所示.已知生产的产品数量在之间的工人有6位.(1)求;(2)工厂规定从个人中任取5人,所选5人任意两人不同组的概率是多少?
选修:坐标系与参数方程 在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,得曲线的极坐标方程为(). (1)化曲线、的方程为普通方程,并说明它们分别表示什么曲线; (2)设曲线与轴的一个交点的坐标为经过点作曲线的切线,求切线的方程.
选修:几何证明选讲 如图,是圆的直径,是弦,的平分线交圆于,,交延长线于点,交于, (1)求证:是圆的切线; (2)若,求的值。
已知,函数,(其中为自然对数的底数). (1)判断函数在上的单调性; (2)是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由.
已知椭圆的对称轴为坐标轴,且抛物线的焦点是椭圆的一个焦点,又点在椭圆上. (1)求椭圆M的方程; (2)已知直线的方向向量为 ,若直线与椭圆交于两点,求面积的最大值.
在几何体中,平面,平面,. (1)设平面与平面的交线为直线,求证:平面; (2)设是的中点,求证:平面平面; (3)求几何体的体积.