如图:已知平面//平面,点A、B在平面内,点C、D在内,直线AB与CD是异面直线,点E、F、G、H分别是线段AC、BC、BD、AD的中点,求证:(Ⅰ)E、F、G、H四点共面;(Ⅱ)平面EFGH//平面.
(本小题满分10分)选修4-5:不等式选讲 设函数. (1)解不等式; (2)若对一切实数均成立,求的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 已知曲线,直线(t为参数). (1)写出曲线C的参数方程,直线的普通方程; (2)过曲线C上任意一点P作与夹角为30°的直线,交于点A,求|PA|的最大值与最小值.
如图,内接于圆,平分交圆于点,过点作圆的切线交直线于点. (1)求证:; (2)求证:.
(本小题满分12分) 已知函数(). (1)讨论的单调性; (2)若对任意恒成立,求实数的取值范围(为自然常数); (3)求证(,).
(本小题满分12分)设点P是曲线上的动点,点P到点(0,1)的距离和它到焦点的距离之和的最小值为. (1)求曲线的方程; (2)若点P的横坐标为1,过作斜率为的直线交于点Q,交轴于点M,过点Q且与PQ垂直的直线与交于另一点N,问是否存在实数,使得直线与曲线相切?若存在,求出的值;若不存在,请说明理由.