小明学了勾股定理后很高兴,兴冲冲的回家告诉了爸爸:在△ABC 中,若∠C=90°, BC =" a" , AC =" b" , AB=c,如下图,根据勾股定理,则 。爸爸笑眯眯地听完后说:很好,你又掌握了一样知识,现在考考你,若不是直角三角形,那勾股定理还成不成立?若成立,请说明理由;若不成立,请你类比勾股定理,试猜想与的关系,并选择其中一种情况给予证明。〔下图备用)
已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(1,3)在反比例函数y=的图象上,且sin∠BAC=.(1)求k的值和边AC的长;(2)求点B的坐标.
先化简,再求值:,其中a=-3.
如图,C为∠AOB的边OA上一点,OC=6,N为边OB上异于点O的一动点,P是线段CN上一点,过点P分别作PQ∥OA交OB于点Q,PM∥OB交OA于点M. (1)若∠AOB=60º,OM=4,OQ=1,求证:CN⊥OB. (2)当点N在边OB上运动时,四边形OMPQ始终保持为菱形. ①问:-的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由. ②设菱形OMPQ的面积为S1,△NOC的面积为S2,求的取值范围.
一次函数y=x的图像如图所示,它与二次函数y=ax2-4ax+c的图像交于A、B两点(其中点A在点B的左侧),与这个二次函数图像的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图像的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3,求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的关系式.
已知:平面直角坐标系中,四边形OABC的顶点分别为O(0,0)、A(5,0)、B(m,2)、C(m-5,2). (1)问:是否存在这样的m,使得在边BC上总存在点P,使∠OPA=90º?若存在,求出m的取值范围;若不存在,请说明理由. (2)当∠AOC与∠OAB的平分线的交点Q在边BC上时,求m的值.