如图,、是 对角线上的两点,且∥,求证:△≌△.
如图,在中,,,.点从点出发,以的速度沿边向终点运动.过点作交折线于点,为中点,以为边向右侧作正方形.设正方形与重叠部分图形的面积是,点的运动时间为.
(1)当点在边上时,正方形的边长为 (用含的代数式表示);
(2)当点不与点重合时,求点落在边上时的值;
(3)当时,求关于的函数解析式;
(4)直接写出边的中点落在正方形内部时的取值范围.
如图①,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,时注满水槽.水槽内水面的高度与注水时间之间的函数图象如图②所示.
(1)正方体的棱长为 ;
(2)求线段对应的函数解析式,并写出自变量的取值范围;
(3)如果将正方体铁块取出,又经过恰好将此水槽注满,直接写出的值.
如图①,是矩形的对角线,,.将沿射线方向平移到△的位置,使为中点,连接,,,,如图②.
(1)求证:四边形是菱形;
(2)四边形的周长为 ;
(3)将四边形沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.
如图,在平面直角坐标系中,直线与函数的图象交于点,.过点作平行于轴交轴于点,在轴负半轴上取一点,使,且的面积是6,连接.
(1)求,,的值;
(2)求的面积.
如图,一枚运载火箭从距雷达站处的地面处发射,当火箭到达点,时,在雷达站处测得点,的仰角分别为,,其中点,,在同一条直线上.求,两点间的距离(结果精确到.
(参考数据:,,.