已知数列{an}和{bn},b1=1,且,记.(I)证明:数列{an}为等比数列;(II)求数列{an}和{bn}的通项公式;(III)记,数列{cn}的前n项和为Tn,若恒成立,求k的最大值.
(本小题满分10分)选修4—4:坐标系与参数方程已知直线的参数方程为(t为参数),若以直角坐标系xOy的O点为极点,Ox方向为极轴,选择相同的长度单位建立极坐标系,曲线C的极坐标方程为.(Ⅰ)求直线的倾斜角;(Ⅱ)若直线与曲线C相交于A、B两点,求|AB|.
(本小题满分10分)选修4-1:几何证明选讲如图所示,已知PA与圆相切,A为切点,PBC为割线,弦相交于E点,F为CE上一点,且.(Ⅰ)求证:;(Ⅱ)求证:.
(本小题满分12分)已知函数,.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)求函数的单调区间.
(本小题满分12分)已知点是椭圆:上一点,分别为的左右焦点,,且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设过椭圆右焦点的直线和椭圆交于两点,是否存在直线,使得△与△的面积比值为?若存在,求出直线的方程;若不存在,说明理由.
(本小题满分12分)如图,在三棱锥中,⊿是等边三角形,是以为斜边的等腰直角三角形.(Ⅰ)证明:AB⊥PC;(Ⅱ),求三棱锥体积.