假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被关闭,且概率均为,记此时教室里敞开的窗户个数为X.(1)求X的分布及数学期望;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时该教室里敞开的窗户个数为Y,求Y的数学期望.
已知函数.(1)设 若函数的最小值是,求的值;(2)设 用定义证明函数在定义域上是增函数.
已知二次函数.(1)若,求满足的概率;(2)若,求满足的概率.
某部门为了了解用电量(单位:度)与气温x(单位:)之间的关系,随机统计了某4天的用电量与当天气温,因某天统计的用电量数据丢失,用表示,如下表:
(1)由以上数据,求这4天气温的方差 .(2)若用电量与气温之间具有较好的线性相关关系,回归直线方程为,且预测气温为时,用电量为68度,求的值.
定义在R上的奇函数.(1)求的值,并求当时,实数的取值范围;(2)当时,不等式恒成立,求实数的取值范围.
某班位学生一次考试数学成绩的频率分布直方图如图,其中成绩分组区间是40,50), 50,60), 60,70),70,80),80,90),90,100.若成绩在区间70,90)的人数为34人.(1)求图中的值及;(2)由频率分布直方图,求此次考试成绩平均数的估计值.