(本小题满分15分)已知椭圆:.(Ⅰ)求椭圆的离心率;(Ⅱ)设直线与椭圆交于不同两点,若点满足,求实数的值.
设U=R,,.求A∩B、A∪B、 (CA)∩(CB).
(本小题14 分) 已知函数. ①当时,求的最小值; ②若函数在区间上为单调函数,求实数的取值范围; ③当时,不等式恒成立,求实数的取值范围.
(本小题13分) 已知抛物线方程为,过作直线. ①若与轴不垂直,交抛物线于A、B两点,是否存在轴上一定点,使得?若存在,求出m的值;若不存在,请说明理由? ②若与轴垂直,抛物线的任一切线与轴和分别交于M、N两点,则自点M到以QN为直径的圆的切线长为定值,试证之;
.(本小题12分) 已知数列,分别是等差、等比数列,且,,. ①求数列,的通项公式; ②设为数列的前项和,求的前项和; ③设,,请效仿②的求和方法,求.
.(本小题12 分)如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD为正方形,E、F分别为AB、PC的中点. ①求证:EF⊥平面PCD; ②求平面PCB与平面PCD的夹角的余弦值.