已知函数.(Ⅰ)求的单调区间;(Ⅱ) 若存在实数,使得成立,求实数的取值范围.
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中轴的正半轴重合,且两坐标系有相同的长度单位,圆C的参数方程为(为参数),点Q的极坐标为。 (1)化圆C的参数方程为极坐标方程; (2)直线过点Q且与圆C交于M,N两点,求当弦MN的长度为最小时,直线的直角坐标方程。
如图,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5。 求:(1)⊙O的半径; (2)s1n∠BAP的值。
已知函数。 (1)若,求在处的切线方程; (2)若在R上是增函数,求实数的取值范围。
已知椭圆的一个顶点为B(0,4),离心率,直线交椭圆于M,N两点。 (1)若直线的方程为,求弦MN的长; (2)如果△BMN的重心恰好为椭圆的右焦点F,求直线方程的一般式。
如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E为PD的中点,PA=2AB=2。 (1)求证:CE∥平面PAB; (2)求四面体PACE的体积.