已知椭圆的离心率,左、右焦点分别为,定点P,点在线段的中垂线上.(1)求椭圆C的方程;(2)设直线与椭圆C交于M、N两点,直线的倾斜角分别为,求证:直线过定点,并求该定点的坐标.
选修4-4:坐标系与参数方程已知曲线的参数方程为,曲线的极坐标方程为.(1)将曲线的参数方程化为普通方程;(2)曲线与曲线有无公共点?试说明理由.
选修4-2:矩阵与变换若点A(-2,2)在矩阵对应变换的作用下得到的点为B(2,2),求矩阵.
已知数列中.为实常数.(Ⅰ)若,求数列的通项公式;(Ⅱ)若.①是否存在常数求出的值,若不存在,请说明理由;②设 .证明:n≥2时, .
已知函数.(Ⅰ)若不等式的解集为,,求的取值范围;(Ⅱ)若为整数,,且函数在上恰有一个零点,求的值;(Ⅲ)在(Ⅱ)的条件下,若函数对任意的x∈,有恒成立,求实数的最小值.
甲方是一农场,乙方是一工厂,由于乙方生产须占用甲方的资源,因此甲方每年向乙方索赔以弥补经济损失并获得一定净收入.乙方在不赔付甲方的情况下,乙方的年利润(元)与年产量(吨)满足函数关系.若乙方每生产一吨产品必须赔付甲方元(以下称为赔付价格).(Ⅰ)将乙方的年利润w (元)表示为年产量(吨)的函数,并求出乙方获得最大利润的年产量;(Ⅱ)甲方每年受乙方生产影响的经济损失金额(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格是多少?