已知四棱锥的底面为直角梯形,,底面,且,,是的中点。(1)证明:面面;(2)求与所成的角;(3)求面与面所成二面角的余弦值.
如图,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°. (I)求二面角P—BC—A的正切值; (II)求二面角C—PB—A的正切值.
设是等差数列,是各项都为正数的等比数列,且,,. (Ⅰ)求,的通项公式; (Ⅱ)求数列的前n项和.
已知函数的部分图像如图所示. (Ⅰ)求函数的解析式; (Ⅱ)求函数的单调递增区间.
在中,已知角所对的边分别是,边,且,又的面积为,求的值.
(本小题满分14分) 设函数, (1)求证:不论为何实数在定义域上总为增函数; (2)确定的值,使为奇函数; (3)当为奇函数时,求的值域.