已知四棱锥的底面为直角梯形,,底面,且,,是的中点。(1)证明:面面;(2)求与所成的角;(3)求面与面所成二面角的余弦值.
如图5:正方体ABCD-A1B1C1D1,过线段BD1上一点P(P平面ACB1)作垂直于D1B的平面分别交过D1的三条棱于E、F、G. (1)求证:平面EFG∥平面A CB1,并判断三角形类型; (2)若正方体棱长为a,求△EFG的最大面积,并求此时EF与B1C的距离.
已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点,求: (Ⅰ)D1E与平面BC1D所成角的大小; (Ⅱ)二面角D-BC1-C的大小; (Ⅲ)异面直线B1D1与BC1之间的距离.
在四棱锥P—ABCD中,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,AD=2a,且PA⊥底面ABCD,PD与底面成30°角. (1)若AE⊥PD,E为垂足,求证:BE⊥PD; (2)求异面直线AE与CD所成角的余弦值.
已知棱长为1的正方体ABCD-A1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF∥平面B1MC.
已知棱长为1的正方体ABCD-A1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小