平面内与两定点、连线的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆或双曲线。求曲线的方程,并讨论的形状与值的关系。
为了解甲、乙两厂的产品质量,分别从两厂生产的产品中各随机抽取10件,测量产品中某种元素的含量(单位:毫克),其测量数据的茎叶图如下: 规定:当产品中此种元素含量大于18毫克时,认定该产品为优等品。 (Ⅰ)试比较甲、乙两厂生产的产品中该种元素含量的平均值的大小; (Ⅱ)现从乙厂抽出的非优等品中随机抽取两件,求至少抽到一件该元素含量为10毫克或13毫克的产品的概率。
【改编】(本小题满分12分)如图,设四棱锥的底面为菱形,且,,. (Ⅰ)证明:平面平面; (Ⅱ)设M、N分别为EC、ED的中点,求四棱锥的体积.
(本小题满分12分)设的内角,,所对的边长分别为,,且,. (Ⅰ)若,求的值; (Ⅱ)若的面积为3,求的值
(本小题满分10分)选修4—5:不等式选讲 已知函数. (Ⅰ)求不等式的解集; (Ⅱ)若关于的不等式恒成立,求实数的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系中,半圆C的参数方程为(为参数,),以O为极点,x轴的非负半轴为极轴建立极坐标系. (Ⅰ)求C的极坐标方程; (Ⅱ)直线的极坐标方程是,射线OM:与半圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.