(本小题满分10分)选修4—4;坐标系与参数方程.已知直线为参数), 曲线 (为参数).(Ⅰ)设与相交于两点,求;(Ⅱ)若把曲线上各点的横坐标压缩为原来的倍,纵坐标压缩为原来的倍,得到曲线,设点是曲线上的一个动点,求它到直线的距离的最小值.
已知向量(Ⅰ)若,求的值;(Ⅱ)若求的值。
(本小题满分14分)已知函数,其中是的导函数。(1)若在处的导数为4,求实数的值;(2)对满足的一切的值,都有,求实数的取值范围;(3)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点
设定义在[0,2]上的函数满足下列条件: ①对于,总有,且,; ②对于,若,则. 证明:(1)();(2)时,.
在数列中,,是给定的非零整数,. (1)若,,求;(2)证明:从中一定可以选取无穷多项组成两个不同的常数数列.
设向量为直角坐标平面内x轴,y轴正方向上的单位向量.若向量,,且.(1)求满足上述条件的点的轨迹方程;(2)设,问是否存在常数,使得恒成立?证明你的结论.