四棱锥P—ABCD中,底面ABCD是矩形,PA底面ABCD,PA=" AB" =1,AD =2,点M是PB的中点,点N在BC边上移动.(I)求证:当N是BC边的中点时,MN∥平面PAC; (Ⅱ)证明,无论N点在BC边上何处,都有PNAM;(Ⅲ)当BN等于何值时,PA与平面PDN所成角的大小为45.
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中: (1)两种大树各成活1株的概率; (2)成活的株数的分布列与期望.
设函数,其中向量,,,且的图象经过点.(Ⅰ)求实数的值;(Ⅱ)求函数的最小值及此时值的集合.
对于正整数,用表示的最大奇因数,如:,……. 记,其中是正整数. (I)写出,,,并归纳猜想与N)的关系式; (II)证明(I)的结论; (Ⅲ)求的表达式.
已知点, 是平面内一动点,直线、斜率之积为. (Ⅰ)求动点的轨迹的方程; (Ⅱ)过点作直线与轨迹交于两点,线段的中点为,求直线的斜率的取值范围.
如图1,在直角梯形中,,,, 为线段的中点.将沿折起,使平面平面,得到几何体,如图2所示. (Ⅰ) 求证:平面; (Ⅱ) 求二面角的余弦值.