已知数列中a1=2,点在函数的图象上,.数列的前n项和为Sn,且满足b1=1,当n2时,.(I)证明数列是等比数列;(II)求Sn(III)设求的值.
已知椭圆与轴、轴的正半轴分别交于两点,原点到直线的距离为,该椭圆的离心率为. (1)求椭圆的方程; (2)是否存在过点的直线与椭圆交于两个不同的点,使成立?若存在,求出的方程;若不存在,说明理由.
如图,四棱锥中,底面为矩形,平面,是的中点. (1)证明://平面; (2)设,三棱锥的体积,求到平面的距离.
已知椭圆的两焦点为,,离心率. (1)求此椭圆的方程; (2)设直线,若与此椭圆相交于,两点,且等于椭圆的短轴长,求的值;
已知公差不为0的等差数列的前项和为,,且成等比数列. (1)求数列的通项公式; (2)求数列的前项和公式.
在中,分别为角的对边,,且. (1)求角; (2)若,求的面积.