已知数列的前项和为,且=,数列中,,点在直线上.(I)求数列的通项和;(II) 设,求数列的前n项和,并求满足的最大正整数.
己知函数 (Ⅰ)讨论函数f(x)的单调性; (Ⅱ)设,若对任意,恒有,求a的取值范围.
已知抛物线,过点的直线交抛物线于A,B两点,坐标原点为O,.(1)求抛物线的方程;(2)当以AB为直径的圆与y轴相切时,求直线的方程.
如图所示的几何体中,四边形ABCD是等腰梯形,AB//CD, ,FC 平面ABCD, AE BD,CB =CD=-CF. (Ⅰ)求证:平面ABCD 平面AED; (Ⅱ)直线AF与面BDF所成角的余弦值
某城市有东西南北四个进入城区主干道的入口,在早高峰时间段,时常发生交通拥堵现象,交警部门统计11月份30天内的拥堵天数,东西南北四个主干道入口的拥堵天数分别是18天,15天,9天,15天.假设每个入口发生拥堵现象互相独立,视频率为概率.(1)求该城市一天中早高峰时间段恰有三个入口发生拥堵的概率;(2)设表示一天中早高峰时间段发生拥堵的主干道入口个数,求的分布列和数学期望.
设数列的前n项和为,满足,且.(Ⅰ)求的通项公式;(Ⅱ)若成等差数列,求证:成等差数列.