设{an}是正数组成的数列,其前n项和为Sn,并且对于所有的nN+,都有。(1)写出数列{an}的前3项; (2)求数列{an}的通项公式(写出推证过程);(3)设,是数列{bn}的前n项和,求使得对所有nN+都成立的最小正整数的值。
在平面内,不等式确定的平面区域为,不等式组确定的平面区域为. (1)定义横、纵坐标为整数的点为“整点”. 在区域中任取3个“整点”,求这些“整点”中恰好有2个“整点”落在区域中的概率; (2)在区域中每次任取一个点,连续取3次,得到3个点,记这3个点落在区域中的个数为,求的分布列和数学期望.
如图,在梯形△ABCD中,AB//CD,AD=DC-=CB=1,ABC=60。,四边形ACFE为矩形,平面ACFE上平面ABCD,CF=1. (1)求证:BC⊥平面ACFE; (2)若M为线段EF的中点,设平面MAB与平面FCB所成角为,求.
在中,分别是角的对边,,. (1)求的值; (2)若,求边的长.
设数列的前项和为,满足,,且,,成等差数列. (1)求,的值; (2) 是等比数列 (3)证明:对一切正整数,有.
已知. (1)求函数在上的最小值; (2)对一切恒成立,求实数的取值范围; (3)证明:对一切,都有成立.