某中学的高二(1)班男同学有名,女同学有名,老师按照分层抽样的方法组建了一个人的课外兴趣小组.(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;(3)实验结束后,第一次做实验的同学得到的实验数据为,第二次做实验的同学得到的实验数据为,请问哪位同学的实验更稳定?并说明理由.
如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形.由对称性,图中8个三角形都是全等的三角形,设. (1)试用表示的面积; (2)求八角形所覆盖面积的最大值,并指出此时的大小.
已知,其中是常数. (1)若是奇函数,求的值; (2)求证:的图像上不存在两点A、B,使得直线AB平行于轴.
在直三棱柱中,,,求: (1)异面直线与所成角的大小; (2)直线到平面的距离.
已知函数在处存在极值. (1)求实数的值; (2)函数的图像上存在两点A,B使得是以坐标原点O为直角顶点的直角三角形,且斜边AB的中点在轴上,求实数的取值范围; (3)当时,讨论关于的方程的实根个数.
已知椭圆的右焦点为F2(1,0),点在椭圆上. (1)求椭圆方程; (2)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由.