已知椭圆的离心率为,定点,椭圆短轴的端点是,,且.(Ⅰ)求椭圆的方程;(Ⅱ)设过点且斜率不为的直线交椭圆于,两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.
春节期间,某商场决定从3种服装、2种家电、3种日用品中,选出3种商品进行促销活动。⑴试求选出的3种商品中至少有一种是家电的概率;⑵商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高100元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为元的奖金;若中两次奖,则共获得数额为元的奖金;若中3次奖,则共获得数额为元的奖金。假设顾客每次抽奖中获的概率都是,请问:商场将奖金数额m最高定为多少元,才能使促销方案对商场有利?
已知向量记.(Ⅰ)若,求的值;(Ⅱ)在△ABC中,角A、B、C的对边分别是、、,且满足,若,试判断△ABC的形状.
在△ABC中,a、b、c分别是角A、B、C的对边,且=-.(2)若b=,a+c=4,求△ABC的面积.
(1) 已知都为锐角,,求与的值(2)已知的值
(1)求的值(2)