(本小题满分12分)命题方程有两个不等的正实数根,命题方程无实数根。若“或”为真命题,求的取值范围
已知双曲线C:离心率是,过点,且右支上的弦过右焦点.(1)求双曲线C的方程;(2)求弦的中点的轨迹E的方程;(3)是否存在以为直径的圆过原点O?,若存在,求出直线的斜率k 的值.若不存在,则说明理由.
已知函数的图象过坐标原点O,且在点处的切线的斜率是.(1)求实数的值;(2)求在区间上的最大值;(3)对任意给定的正实数,曲线上是否存在两点P、Q,使得是以O为直角顶点的直角三角形,且此三角形斜边中点在轴上?说明理由.
已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)若过点(2,0)的直线与椭圆相交于两点,设为椭圆上一点,且满足(为坐标原点),当< 时,求实数取值范围.
高二年级的一个研究性学习小组在网上查知,某珍贵植物种子在一定条件下发芽成功的概率为,该研究性学习小组又分成两个小组进行验证性实验.(1)第1组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则将继续进行下次实验,直到种子发芽成功为止,但发芽实验的次数最多不超过5次,求第二小组所做种子发芽实验的次数的概率分布列和期望.
如图,三棱柱ABC-A1B1C1的底面是边长为2的正三角形且侧棱垂直于底面,侧棱长是,D是AC的中点. (1)求证:B1C∥平面A1BD;(2)求二面角A1-BD-A的大小;(3)求直线AB1与平面A1BD所成的角的正弦值.