已知函数. (Ⅰ)当时,求函数在,上的最大值、最小值; (Ⅱ)令,若在,上单调递增,求实数的取值范围.
(本小题满分12分) 已知函数 (1)求函数的极大值; (2)当时,求函数的值域; (3)已知,当时,恒成立,求的取值范围。
(本小题满分12分) 某商场准备在国庆节期间举行促销活动,根据市场调查,该商场决定从种服装商品, 种家电商品, 种日用商品中,选出种商品进行促销活动. (Ⅰ)试求选出的种商品中至多有一种是家电商品的概率; (Ⅱ)商场对选出的某商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高元,同时,若顾客购买该商品,则允许有次抽奖的机会,若中奖,则每次中奖都获得数额为元的奖券.假设顾客每次抽奖时获奖的概率都是,若使促销方案对商场有利,则最少为多少元?
(本小题满分12分) 如图,在直三棱柱ABC—A1B1C1中,AC=1,AB=,BC=,AA1=。 (I)求证:A1B⊥B1C; (II)求二面角A1—B1C—B的大小。
(本小题满分12分) 若不等式对一切正整数n都成立,求正整数a的最大值,并用数学归纳法证明你的结论。
(本小题满分10分) 已知函数 (I)求函数的最小值和最小正周期; (II)设的内角的对边分别为,且,若向量与向量共线,求的值.