在中,角,,的对边分别为,且,,成等差数列.(Ⅰ)若,,求的值;(Ⅱ)设,求的最大值.
如图,四棱锥P-ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点,求证: (1)PA∥平面BDE; (2)平面PAC⊥平面BDE.
已知全集U=R,集合M={x|x≤a-2或x≥a+3},N={x|-1≤x≤2}. (1)若,求()∩(); (2)若∩=,求实数的取值范围.
已知函数,. (Ⅰ)若函数,求函数的单调区间; (Ⅱ)设直线为函数的图象上一点处的切线.证明:在区间上存在唯一的,使得直线与曲线相切.
等差数列中,,前项和为,等比数列各项均为正数,,且,的公比 (1)求与; (2)证明:
如图,在四棱锥中,底面为菱形,,为的中点。 (1)若,求证:平面平面; (2)点在线段上,,试确定的值,使平面;(3)在(2)的条件下,若平面平面ABCD,且,求二面角的大小。