已知数列{an}的各项均为正数,其前n项和为Sn,且-1,,数列,,……,是首项为1,公比为的等比数列。(I)求证:数列{an}是等差数列;(II)若,求数列{cn}的前n项和Tn。
在△中,角、、所对的边分别为、、,且.(Ⅰ)若,求角;(Ⅱ)设,,试求的最大值.
已知不等式的解集为A,函数的定义域为B.(Ⅰ)若,求的取值范围;(Ⅱ)证明:函数的图象关于原点对称。
如图,点A,B是单位圆上的两点,A,B点分别在第一、二象限,点C是圆与x轴正半轴的交点,△AOB是正三角形,若点A的坐标为(,),记∠COA=α.(1)求的值;(2)求|BC|2的值.
已知为坐标原点,,(,是常数),若 (1)求关于的函数关系式; (2)若的最大值为,求的值; (3)利用(2)的结论,用“五点法”作出函数在长度为一个周期的闭区间上的简图,并指出其单调区间。
已知向量,, (1)求证:⊥; (2),求的值