如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.求线段AB所在直线的函数关系式,并写出当0≤y≤2时,自变量x的取值范围;将线段AB绕点B逆时针旋转90°,得到线段BC,若直线BC的函数关系式为y=kx+b,则y随x的增大而 (填“增大”或“减小”).
如图,点A、E、F、C在同一直线上, AD∥BC, AD="BC," AE=CF. 求证: BE=DF
(1)若mx=4,my=3,求mx+3y的值 (2)、先化简,再求值: 已知,其中x=﹣2,y=﹣0.5.
计算: (1)(2)(3);
如图,以正方形ABCD的DC边为一边向外作一个等边三角形CDE。 (1)求证: ΔABE 是等腰三角形; (2)求 ∠ECD 的度数.
如图甲,已知ΔABC和ΔCEF是两个不等的等边三角形,且有一个公共顶点C,连接AF和BE. (1)线段AF和BE有怎样的大小关系?证明你的猜想. (2)将图中的ΔCEF绕点C旋转一定的角度,得到图乙,(1)中的结论还成立吗?做出判断并说明理由.