已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求的面积.
设函数,其中,曲线恒与轴相切于坐标原点.(1)求常数的值;(2)当时,关于的不等式恒成立,求实数的取值范围;(3)求证:.
如图所示,曲线C由部分椭圆C1:+=1(a>b>0,y≥0)和部分抛物线C2:y=-x2+1(y≤0)连接而成,C1与C2的公共点为A,B,其中C1所在椭圆的离心率为.(1)求a,b的值;(2)过点B的直线l与C1,C2分别交于点P,Q(P,Q,A,B中任意两点均不重合),若AP⊥AQ,求直线l的方程.
已知Sn是数列{an}的前n项和,且Sn=2an-2n对n∈N*成立.(1)证明数列{an+2}是等比数列,并求出数列{an}的通项公式;(2)求数列{nan}的前n项和Tn .
在底面是矩形的四棱锥PABCD中,PA⊥平面ABCD,PA=AB=2,BC=4,E是PD的中点. (1)求证:平面PDC⊥平面PAD; (2)求二面角EACD的余弦值; (3)求直线CD与平面AEC所成角的正弦值.
已知向量m=(sin ωx+cosωx,1),n=(2cos ωx,-)(ω>0),函数f(x)=m·n的两条相邻对称轴间的距离为.(1)求函数f(x)的单调递增区间;(2)当x∈[-,] 时,求f(x)的值域.