某项试验在甲、乙两地各自独立地试验两次,已知在甲、乙两地每次试验成功的概率依次为、;不成功的概率依次为、.(Ⅰ)求以上的四次试验中,至少有一次试验成功的概率;(Ⅱ)在以上的四次试验中,试验成功的次数为,求的分布列,并计算.
(本小题满分12分)已知椭圆C的左、右焦点坐标分别是,,离心率是,直线椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P。(1)求椭圆C的方程;(2)若圆P经过原点,求的值;(3)设Q(x,y)是圆P上的动点,当t变化时,求y的最大值。
(、(本小题满分12分)已知椭圆的中心在原点,焦点,且经过点(1)求椭圆的方程;(2)设、是直线:上的两个动点,点与点关于原点对称,若,求的最小值。
((本小题满分12分)某洗衣机生产厂家有A、B两种型号的洗衣机参加家电下乡活动。若厂家投放A、B型号洗衣机的价值分别为万元,农民购买获得的补贴分别为万元。已知厂家把总价值为10万元的A、B两种型号洗衣机投放市场,且A、B两型号的洗衣机投放金额都不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出其最大值(精确到,参考数据:)
(本小题满分12分)已知抛物线C:过点A (1 , -2)。(1)求抛物线C 的方程;(2)是否存在平行于OA(O为坐标原点)的直线L,使得直线L与抛物线C有公共点,且直线OA与L的距离等于?若存在,求直线L的方程;若不存在,说明理由。
(本小题满分14分)已知二次函数的图象经过坐标原点,与轴的另一个交点为,且,数列的前项的和为,点在函数的图象上.(1)求函数的解析式;(2)求数列的通项公式;(3)设,求数列的前项和.