已知函数=,=alnx,aR。(1) 若曲线y=与曲线y=相交,且在交点处有相同的切线,求a的值及该切线的方程;(2)设函数h(x)= ,当h(x)存在最小之时,求其最小值的解析式;(3)对(2)中的,证明:当a(0,+)时,1.
已知动圆过定点(1,0),且与直线相切. (1)求动圆圆心的轨迹方程; (2)设是轨迹上异于原点的两个不同点,直线和的倾斜角分别为和,①当时,求证直线恒过一定点; ②若为定值,直线是否仍恒过一定点,若存在,试求出定点的坐标;若不存在,请说明理由.
如图,直角梯形中,,点分别是的中点,点在上,沿将梯形翻折,使平面平面. (1)当最小时,求证:; (2)当时,求二面角平面角的余弦值.
已知函数. (1)当时,求函数的单调递增区间; (2)设的内角的对应边分别为,且若向量与向量共线,求的值.
在对某渔业产品的质量调研中,从甲、乙两地出产的该产品中各随机抽取10件,测量该产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图: 规定:当产品中的此种元素含量毫克时为优质品. (1)试用上述样本数据估计甲、乙两地该产品的优质品率(优质品件数/总件数); (2)从乙地抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优质品数的分布列及数学期望.
已知函数. (1)当时,求曲线在点的切线方程; (2)对一切,恒成立,求实数的取值范围; (3)当时,试讨论在内的极值点的个数.