已知函数=,=alnx,aR。(1) 若曲线y=与曲线y=相交,且在交点处有相同的切线,求a的值及该切线的方程;(2)设函数h(x)= ,当h(x)存在最小之时,求其最小值的解析式;(3)对(2)中的,证明:当a(0,+)时,1.
(本小题满分12分)已知圆C:的圆心为C,点,O为坐标原点.(1)求过点A和圆心的直线方程;(2)求过点A和原点O的直线被圆C所截得的弦长.
(本小题满分10分)已知平面向量.(1)求向量的坐标;(2)当实数为何值时,与共线.
(本小题满分12分)设函数在及时取得极值;(Ⅰ)求与b的值;(Ⅱ)若对于任意的,都有成立,求c的取值范围。
(本小题满分12分)如图,平面,,,,分别为的中点.(Ⅰ)证明:平面;(Ⅱ)求与平面所成角的正弦值。
(本小题满分12分)设a为实数,函数(Ⅰ)求f(x)的极值;(Ⅱ)当在什么范围内取值时,曲线y= f(x)与x轴仅有一个交点。