(本小题满分10分)利民商店经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题: (1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元. 在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润之和最大?每天的最大利润是多少?
(本题10分)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到到B′的位置,AB′与CD交于点E.(1)求证:△AED≌△CEB′(2)若AB = 8,DE = 3,点P为线段AC上任意一点,PG⊥AE于G,PH⊥BC于H.求PG + PH的值.
(本题8分)某地震救援队探测出某建筑物废墟下方点C处有生命迹象,已知废墟一侧地面上两探测点A、B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的尝试.(结果精确到0.1米,参考数据:.)
(本题8分)为推进阳光体育活动的开展,某校九年级三班同学组建了足球、篮球、乒乓球、跳绳四个体育活动小组.经调查,全班同学全员参与,各活动小组人数分布情况的扇形图和条形图如下:(1)求该班学生人数;(2)请你补上条形图的空缺部分;(3)求跳绳人数所占扇形圆心角的大小.
(11分)如图,抛物线经过的三个点,已知轴,点在轴上,点在轴上,且.(1)求抛物线的对称轴;(2)写出三点的坐标并求抛物线的解析式;(3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形?若存在,请在图中画出所有符合条件的P点,然后直接写出点的坐标;若不存在,请说明理由.
已知:如图,在梯形ABCD中,AD∥BC,∠DCB = 90°,E是AD的中点,点P是BC边上的动点(不与点B重合),EP与BD相交于点O.(1)当P点在BC边上运动时,求证:△BOP∽△DOE;(2)设(1)中的相似比为,若AD︰BC = 2︰3. 请探究:当k为下列三种情况时,四边形ABPE是什么四边形?①当= 1时,是 ;②当= 2时,是 ;③当= 3时,是 .请证明= 2时的结论.