如图1,在△ABC中,AB=BC=5,AC="6." △ECD是△ABC沿BC方向平移得到的,连接AE.AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,说明理由; (2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;②当线段BP的长为何值时,△PQR与△BOC相似?
化简:.
计算: .
如图,在直角梯形中,∥,,,,=,点在上,=4. (1)线段= ; (2)试判断△的形状,并说明理由; (3)现有一动点在线段上从点开始以每秒1个单位长度的速度向终点移动,设移动时间为秒(>0).问是否存在的值使得△为直角三角形?若存在直接写出的值;若不存在,请说明理由.
我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A 可以用来解释,实际上利用一些卡片拼成的图形面积也可以 对某些二次三项式进行因式分解. (1)图B可以解释的代数恒等式是_____________; (2)现有足够多的正方形和矩形卡片,如图C: ①.若要拼出一个面积为的矩形,则需要1号卡片张,2号卡片张, 3号卡片张; ②.试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形,使该矩形的面积为,并利用你画的图形面积对进行因式分解.
如图,在等腰梯形中,∥,已知, (1)求的度数; (2)若,,试求等腰梯形的周长.