( 7分)如图,AB∥CD,分别写出下面四个图形中∠A与∠P、∠C的关系,请你从所得到的关系中任选一图的结论说明理由。⑴ ⑵ ⑶ ⑷
已知双曲线上一点M(1,m)和双曲线上一点N(n,3).(1)求m、n的值;(2)求△OMN的面积.
在直角坐标系xOy中,已知点P是反比例函数(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:①求出点A,B,C的坐标;②反比例函数(x>0)图象上是否存在点M,使△MBP的面积是菱形ABCP面积的,若存在,直接写出所有满足条件的M点的坐标;若不存在,试说明理由.
如图,四边形ABCD、BEFG均为正方形.(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明.(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系 .
如图,在11×11的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线对称的△A1B1C1;(要求A与A1,B与B1,C与C1相对应)(2)作出△ABC绕点C顺时针方向旋转90°后得到的△A2B2C;(3)在⑵的条件下直接写出点B旋转到B2所经过的路径的长.(结果保留π).
如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D使∠BDC=30°.(1)求证:DC是⊙O的切线.(2)若AB=2,求DC的长.