在直角坐标系xOy中,已知点P是反比例函数(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:①求出点A,B,C的坐标;②反比例函数(x>0)图象上是否存在点M,使△MBP的面积是菱形ABCP面积的,若存在,直接写出所有满足条件的M点的坐标;若不存在,试说明理由.
已知⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,求AB和CD之间的距离.
已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.
如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.
前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批盒装花每盒的进价是多少元?
因式分解:(1)4a2b2﹣(a2+b2)2; (2)(a+x)4﹣(a﹣x)4.(3)分解因式:(x﹣y)2﹣4(x﹣y﹣1)(4)a2﹣4ax+4a; (5)(x2﹣1)2+6(1﹣x2)+9.