等比数列的前项和,且(1)求数列的通项公式(2)求数列的前项的和
函数.(I)函数在点处的切线与直线垂直,求a的值;(II)讨论函数的单调性;(III)不等式在区间上恒成立,求实数a的取值范围.
已知椭圆的离心率,直线经过椭圆C的左焦点.(I)求椭圆C的方程;(II)若过点的直线与椭圆C交于A,B两点,设P为椭圆上一点,且满足(其中O为坐标原点),求实数t的取值范围.
已知等差数列的前n项和为,满足,为递增的等比数列,且是方程的两个根.(I)求数列,的通项公式;(II)若数列满足,求数列的前n项和.
如图,在三棱柱中,四边形都为矩形.(I)设D是AB的中点,证明:直线平面; (II)在中,若,证明:直线平面.
已知函数.(I)求函数的最小正周期;(II)将函数的图象向左平移个单位,得到函数的图象.在中,角A,B,C的对边分别为,若,求的面积.