如图,设抛物线的准线与x轴交于F1,焦点为F2;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在x轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线C1上一动点,且M在P与Q之间运动。(1)当m=1时,求椭圆C2的方程;(2)当的边长恰好是三个连续的自然数时,求面积的最大值。
已知函数(为常数)是实数集上的奇函数. (1)求实数的值; (2)讨论关于的方程的根的个数; (3)证明:.
设函数,其中. (1)当时,判断函数在定义域上的单调性; (2)求函数的极值点.
已知数列的前项和为,且满足. (1)求证:数列是等比数列,并求数列的通项公式; (2)求证:.
已知单调递增的等比数列满足:,且是,的等差中项. (1)求数列的通项公式; (2)若,,求成立的正整数的最小值.
已知函数,直线,是图象的任意两条对称轴,且的最小值为. (1)求的表达式; (2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长为原来的2倍,纵坐 标不变,得到函数的图象,若关于的方程,在区间上有且只有一个实数解,求实数的取值范围.