一辆汽车从A地驶往B地,前路段为普通公路,其余路段为高速公路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组解决的问题,并写出解答过程.
校园超市以4元 / 件购进某物品,为制定该物品合理的销售价格,对该物品进行试销调查.发现每天调整不同的销售价,其销售总金额为定值,其中某天该物品的售价为6元 / 件时,销售量为50件.
(1)设售价为 x 元 / 件时,销售量为 y 件.请写出 y 与 x 的函数关系式;
(2)若超市考虑学生的消费实际,计划将该物品每天的销售利润定为60元,则该物品的售价应定为多少元 / 件?
如图, E , F 是正方形 ABCD 的对角线 AC 上的两点,且 AE = CF .
(1)求证:四边形 BEDF 是菱形;
(2)若正方形边长为4, AE = 2 ,求菱形 BEDF 的面积.
如图, ΔABC 中, A ( − 4 , 4 ) , B ( − 4 , − 2 ) , C ( − 2 , 2 ) .
(1)请画出将 ΔABC 向右平移8个单位长度后的△ A 1 B 1 C 1 ;
(2)求出 ∠ A 1 B 1 C 1 的余弦值;
(3)以 O 为位似中心,将△ A 1 B 1 C 1 缩小为原来的 1 2 ,得到△ A 2 B 2 C 2 ,请在 y 轴右侧画出△ A 2 B 2 C 2 .
某校开展对学生“劳动习惯”情况的调查,为了解全校500名学生“主动做家务事”的情况,随机抽查了该校部分学生一周“主动做家务事”的次数,制成了如下的统计表和统计图.
次数
0
1
2
3
4
人数
6
13
12
(1)根据以上信息,求在被抽查学生中,一周“主动做家务事”3次的人数;
(2)若在被抽查学生中随机抽取1名,则抽到的学生一周“主动做家务事”不多于2次的概率是多少?
(3)根据样本数据,估计全校学生一周“主动做家务事”3次的人数.
如图,抛物线 y = a x 2 + bx + c ( a ≠ 0 ) ,经过点 A ( − 1 , 0 ) , B ( 3 , 0 ) , C ( 0 , 3 ) 三点.
(1)求抛物线的解析式及顶点 M 的坐标;
(2)连接 AC 、 BC , N 为抛物线上的点且在第四象限,当 S ΔNBC = S ΔABC 时,求 N 点的坐标;
(3)在(2)问的条件下,过点 C 作直线 l / / x 轴,动点 P ( m , 3 ) 在直线 l 上,动点 Q ( m , 0 ) 在 x 轴上,连接 PM 、 PQ 、 NQ ,当 m 为何值时, PM + PQ + QN 最小,并求出 PM + PQ + QN 的最小值.