(本题满分12分) 某工厂有一种材科,可加工甲、乙、丙三种型号机械配件共240个.厂方计划由20个工人一天内加工完成.并要求每人只加工一种配件.根据下表提供的信息。解答下列问题:(1)设加工甲种配件的人数为x,加工乙种配件的人数为y,求y与x之间的函数关系式。(2)如果加工每种配件的人数均不少于3人.那么加工配件的人数安排方案有几种?写出每种安排方案.(3)要使此次加工配件的利润最大,应采用(2)中哪种方案?并求出最大利润值.
如图,BD是矩形ABCD的对角线.
(1)求作 ⊙ A ,使得 ⊙ A 与 B D 相切(要求:尺规作图,不写作法,保留作图痕迹);
(2)在(1)的条件下,设BD与 ⊙ A 相切于点E, C F ⊥ B D ,垂足为F.若直线CF与 ⊙ A 相切于点G,求 tan ∠ A D B 的值.
在学校开展“劳动创造美好生活”主题系列活动中,八年级(1)班负责校园某绿化角的设计、种植与养护.同学们约定每人养护一盆绿植,计划购买绿萝和吊兰两种绿植共46盆,且绿萝盆数不少于吊兰盆数的2倍.已知绿萝每盆9元,吊兰每盆6元.
(1)采购组计划将预算经费390元全部用于购买绿萝和吊兰,问可购买绿萝和吊兰各多少盆?
(2)规划组认为有比390元更省钱的购买方案,请求出购买两种绿植总费用的最小值.
如图, △ A B C 内接于⊙O, A D ∥ B C 交⊙O于点D, D F ∥ A B 交BC于点E,交⊙O于点F,连接AF,CF.
(1)求证: A C = A F ;
(2)若⊙O的半径为3, ∠ C A F = 30 ° ,求 AC ̂ 的长(结果保留 π ).
学校开展以“劳动创造美好生活”为主题的系列活动,同学们积极参与主题活动的规划、实施、组织和管理,组成调查组、采购组、规划组等多个研究小组.
调查组设计了一份问卷,并实施两次调查.活动前,调查组随机抽取50名同学,调查他们一周的课外劳动时间 t (单位: h ),并分组整理,制成如下条形统计图.活动结束一个月后,调查组再次随机抽取50名同学,调查他们一周的课外劳动时间t(单位:h),按同样的分组方法制成如下扇形统计图.其中A组为 0 ≤ t < 1 ,B组为 1 ≤ t < 2 ,C组为 2 ≤ t < 3 ,D组为 3 ≤ t < 4 ,E组为 4 ≤ t < 5 ,F组为 t ≥ 5 .
(1)判断活动前、后两次调查数据的中位数分别落在哪一组;
(2)该校共有2000名学生,请根据活动后的调查结果,估计该校学生一周的课外劳动时间不小于 3 h 的人数.
如图,点B,F,C,E在同一条直线上, B F = E C , A B = D E , ∠ B = ∠ E .求证: ∠ A = ∠ D .