某射击小组有甲、乙两名射手,甲的命中率为,乙的命中率为,在射击比武活动中每人射击两发子弹则完成一次检测,在一次检测中,若两人命中次数相等且都不少于一发,则称该射击小组为“先进和谐组”.(Ⅰ)若,求该小组在一次检测中荣获“先进和谐组”的概率;(Ⅱ)计划在2011年每月进行1次检测,设这12次检测中该小组获得“先进和谐组”的次数为, 如果,求的取值范围.
已知数列{}中,为其前n项和,且,当时,恒有(为常数).(Ⅰ)求常数的值;(Ⅱ)当时,求数列{}的通项公式;(Ⅲ)设,数列的前n项和为,求证:.
从某批产品中,有放回地抽取产品两次,每次随机抽取1件,假设事件:“取出的2件产品中至多有1件是二等品”的概率.(Ⅰ)求从该批产品中任取1件是二等品的概率;(Ⅱ)若该批产品共20件,从中任意抽取2件,X表示取出的2件产品中二等品的件数,求X的分布列与期望.
(本大题满分10分)选修4-5:不等式选讲已知函数(Ⅰ)若的解集为,求实数的值;(Ⅱ)当且时,解关于的不等式
(本小题满分10分) 选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,以轴正半轴为极轴,圆的极坐标方程为(Ⅰ)将圆的极坐标方程化为直角坐标方程;(Ⅱ)过点作斜率为1直线与圆交于两点,试求的值.
(本小题满分10分)选修4-1:几何证明选讲如图所示,AC为⊙O的直径,D为弧BC的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:ACBC= 2ADCD.