设函数.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)若函数在区间内单调递增,求的取值范围.
正的边长为4,CD是AB边上的高,E、F分别是AC和BC的中点(如图(1)).现将沿CD翻折成直二面角A-DC-B(如图(2)).在图形(2)中:(Ⅰ)试判断直线AB与平面DEF的位置关系,并说明理由;(Ⅱ)求二面角E-DF-C的余弦值;(Ⅲ)在线段BC上是否存在一点P,使?证明你的结论.
如图,港口A北偏东30°方向的C处有一检查站,港口正东方向的B处有一轮船,距离检查站31海里,该轮船从B处沿正西方向航行20海里后到达D处观测站,已知观测站与检查站距离21海里,问此时轮船离港口A还有多远?
已知函数()均在函数的图象上。(Ⅰ)求数列的通项公式;(Ⅱ)令证明:
(本小题满分14分)已知函数,(1)求函数的单调区间,并判断是否有极值;(2)若对任意的,恒有成立,求的取值范围;(3)证明:().
(本小题满分12分)设是圆上的动点,点是点在轴上的投影,为上一点,且.(1)求证:点的轨迹是椭圆;(2)设(Ⅰ)中椭圆的左焦点为,过点的直线交椭圆于两点,为线段的中点,当三角形(为坐标原点)的面积最大时,求直线的方程.