设函数.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)若函数在区间内单调递增,求的取值范围.
已知是数列的前项和,,且,其中. (1)求数列的通项公式; (2)计算的值.
设函数,已知关于的方程的两个根为, (1)判断在上的单调性; (2)若,证明.
在直三棱柱中,∠ACB=90°,M是的中点,N是的中点。 (1)求证:MN∥平面; (2)求点到平面BMC的距离; (3)求二面角1的大小。
(本题12分)在一次国际比赛中,中国女排与俄罗斯女排以“五局三胜”制进行决赛,根据以往战况,中国女排在每一局中赢的概率都是,已知比赛中,俄罗斯女排先赢了第一局,求: (1)中国女排在这种情况下取胜的概率; (2)设比赛局数为,求的分布列及(均用分数作答).
已知函数在时取到最大值. (1)求函数的定义域; (2)求实数的值.