在△ABC中,角A、B、C所对应的边为(1)若求A的值;(2)若,求的值.
已知圆C:x2+y2-2x+4y-4=0.问是否存在斜率为1的直线l,使l被圆截得的弦长为AB,以AB为直径的圆经过原点.若存在,写出直线l的方程;若不存在,说明理由.
如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点.(1)求证:EF∥平面ABC1D1.(2)求证:EF⊥B1C.(3)求三棱锥B1-EFC的体积.
递增等比数列{an}满足a2+a3+a4=28,且a3+2是a2和a4的等差中项.(1)求数列{an}的通项公式;(2)若,求数列{bn}的前n项和.
从高三抽出50名学生参加数学竞赛,由成绩得到如下的频率分布直方图.由于一些数据丢失,试利用频率分布直方图求:(1)这50名学生成绩的众数与中位数.(2)这50名学生的平均成绩.
在△ABC中,已知内角A=,边BC=2,设内角B=x,周长为y.(1)求函数y=f(x)的解析式和定义域;(2)求y的最大值.