(本小题共14分)如图,在四棱锥中,底面是正方形,平面, 是中点,为线段上一点. (Ⅰ)求证:; (Ⅱ)试确定点在线段上的位置,使//平面,并说明理由.
椭圆=1的焦点为F1、F2,点P为椭圆上的动点,当∠F1PF2为钝角时,求点P的横坐标x0的取值范围.
若椭圆=1的焦距为2,求椭圆上的一点到两个焦点的距离之和.
根据下列条件求椭圆的标准方程:(1)两准线间的距离为,焦距为2;(2)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P点作长轴的垂线恰好过椭圆的一个焦点.
设椭圆的中心在原点,对称轴为坐标轴,且长轴长是短轴长的2倍.又点P(4,1)在椭圆上,求该椭圆的方程.
用数字0,1,2,3,4,5,(1)可以组成多少个没有重复数字的六位数?(2)试求这些六位数的和.