(本小题共14分)已知是由满足下述条件的函数构成的集合:对任意,①方程有实数根;②函数的导数满足.(Ⅰ)判断函数是否是集合中的元素,并说明理由;(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;(Ⅲ)对任意,且,求证:对于定义域中任意的,,,当,且时,.
(本小题满分14分) 如图所示的长方体中,底面是边长为的正方形,为与的交点,,是线段的中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面; (Ⅲ)求二面角的大小.
(本小题满分12分) 已知射手甲射击一次,击中目标的概率是. (1)求甲射击5次,恰有3次击中目标的概率; (2)假设甲连续2次未击中目标,则停止其射击,求甲恰好射击5次后,被停止射击的概率.
(本小题满分12分) 在△中,角所对的边分别为,已知,,. (1)求的值;(2)求的值.
设数列满足,令. ⑴试判断数列是否为等差数列?并说明理由; ⑵若,求前项的和; ⑶是否存在使得三数成等比数列?
如图,有一壁画,最高点A处离地面4m,最低点B处离地面2m,若从离地高1.5m的处观赏它,则离墙多远时,视角最大?