(本小题共14分)已知是由满足下述条件的函数构成的集合:对任意,①方程有实数根;②函数的导数满足.(Ⅰ)判断函数是否是集合中的元素,并说明理由;(Ⅱ)集合中的元素具有下面的性质:若的定义域为,则对于任意,都存在,使得等式成立.试用这一性质证明:方程有且只有一个实数根;(Ⅲ)对任意,且,求证:对于定义域中任意的,,,当,且时,.
如图,现有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知,,且,设,绿地面积为.1、写出关于的函数关系式,并指出其定义域;2、当为何值时,绿地面积最大?
已知函数(1)若函数为奇函数,求实数的值;(2)在(1)的条件下,求函数的值域
计算:1、;2、已知,求的值.
已知全集,集合,,求,(.
(本小题满分15分)已知函数在上为增函数,且,为常数,.(Ⅰ)求的值;(Ⅱ)若在上为单调函数,求m的取值范围;(Ⅲ)设,若在上至少存在一个,使得成立,求的m取值范围.