(本小题满分14分)给定椭圆:. 称圆心在原点,半径为的圆是椭圆的“准圆”. 若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(1)求椭圆的方程和其“准圆”方程;(2)点是椭圆的“准圆”上的一个动点,过动点作直线,使得与椭圆都只有一个交点,试判断是否垂直?并说明理由.
已知复数z=x+yi(x,y∈R)在复平面上对应的点为M. (1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率. (2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.
现有一批产品共有10件,其中8件为正品,2件为次品. (1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率. (2)如果从中一次取3件,求3件都是正品的概率.
在平面直角坐标系xOy中,平面区域W中的点的坐标(x,y)满足从区域W中随机取点M(x,y). (1)若x∈Z,y∈Z,求点M位于第一象限的概率. (2)若x∈R,y∈R,求|OM|≤2的概率.
某中学为研究学生的身体素质与课外体育锻炼时间的关系,对400名高一学生的一周课外体育锻炼时间进行调查,结果如下表所示:
现采用分层抽样的方法抽取容量为20的样本. (1)其中课外体育锻炼时间在分钟内的学生应抽取多少人? (2)若从(1)中被抽取的学生中随机抽取2名,求这2名学生课外体育锻炼时间均在分钟内的概率.
做抛掷两颗骰子的试验:用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第二颗骰子出现的点数,(1)写出试验的基本事件;(2)求事件“出现点数之和大于8”的概率.