(本小题满分14分)已知各项均为正数的数列{an}前n项和为Sn,(p – 1)Sn = p2 – an,n ∈N*,p > 0且p≠1,数列{bn}满足bn = 2logpan.(Ⅰ)若p =,设数列的前n项和为Tn,求证:0 < Tn≤4;(Ⅱ)是否存在自然数M,使得当n > M时,an > 1恒成立?若存在,求出相应的M;若不存在,请说明理由.
动圆经过定点,且与直线相切。(1)求圆心的轨迹方程;(2)直线过定点与曲线交于、两点:①若,求直线的方程;②若点始终在以为直径的圆内,求的取值范围。
某兴趣小组测量电视塔AE的高度H(单位:m),如示意图,垂直放置的标杆BC的高度h=4m,仰角∠ABE=,∠ADE=。(1) 该小组已经测得一组、的值,tan=1.24,tan=1.20,请据此算出H的值;(2) 该小组分析若干测得的数据后,认为适当调整标杆到电视塔的距离d(单位:m),使与之差较大,可以提高测量精确度。若电视塔的实际高度为125m,试问d为多少时,最大?
如图,在直三棱柱中,,,是的中点.(1)求证:平行平面;(2)求二面角的余弦值;(3)试问线段上是否存在点,使与成角?若存在,确定点位置,若不存在,说明理由.
设函数定义域为,且.设点是函数图像上的任意一点,过点分别作直线和轴的垂线,垂足分别为.(1)写出的单调递减区间(不必证明);(2)问:是否为定值?若是,则求出该定值,若不是,则说明理由;(3)设为坐标原点,求四边形面积的最小值.
定义数列,(例如时,)满足,且当()时,.令.(1)写出数列的所有可能的情况;(2)设,求(用的代数式来表示);(3)求的最大值.