.已知等差数列的首项为,公差为b,等比数列的首项为b,公比为a(其中a,b均为正整数)。(I)若,求数列的通项公式;(II)对于(1)中的数列,对任意在之间插入个2,得到一个新的数列,试求满足等式的所有正整数m的值;(III)已知,若存在正整数m,n以及至少三个不同的b值使得等成立,求t的最小值,并求t最小时a,b的值。
已知函数的定义域是,且满足,,如果对于,都有,(1)求;(2)解不等式。
设为实数,函数,(1)讨论的奇偶性;(2)求的最小值。
设函数与的定义域是且,是偶函数, 是奇函数,且,求和的解析式.
已知函数的定义域为,且对任意,都有,且当时,恒成立,证明:(1)函数是上的减函数;(2)函数是奇函数。
判断下列函数的奇偶性:(1) (2)