如图,在ΔABC中,为BC的垂直平分线且交BC于点D,E为上异于D的任意一点,F为线段AD上的任意一点。(1)求的值;(2)判断的值是否为一常数,并说明理由;(3)若的最大值。
如图,在梯形中‖,平面平面,四边形是矩形,,点在线段上.(Ⅰ)求证:平面;(Ⅱ)当为何值时,‖平面?证明你的结论;(Ⅲ)求二面角的大小.
17五名学生在玩模奖游戏,游戏规则是:取5个编号为1、2、3、4、5的相同小球装入袋中,五名同学也分别编上1、2、3、4、5号,然后五人依次从袋中模一球,若某人摸到的球的编号和自己的编号相同则该同学获奖。(1)求甲获奖的概率;(2)设表示获奖人数,求的概率分布列和数学期望。
(1)已知,求证:;(2)已知实数满足:,试利用(1)求的最小值。
已知数列满足:。(1)若,求证:数列为等差数列;(2)求数列的前项和
已知椭圆中心在原点,焦点在轴上,离心率,过椭圆的右焦点且垂直于长轴的弦长为(1)求椭圆的标准方程;(2)为椭圆左顶点,为椭圆上异于的任意两点,若,求证:直线过定点并求出定点坐标。