袋中装有13个红球和个白球,这些红球和白球除了颜色不同之外,其余都相同,从袋中同时取两个球.(1)若取出的是2个红球的概率等于取出的是一红一白两个球的概率的3倍,试求的值;(2) 某公司的某部门有21位职员,公司将进行抽奖活动,在(1)的条件下,规定:每个职员都从袋中同时取两个球,然后放回袋中,摇匀再给别人抽奖,若某人取出的两个球是一红一白时,则中奖(奖金1000元);否则,不中奖(也发鼓励奖金100元).试求此公司在这次抽奖活动中所发奖金总额的期望值.
已知数列中,,前和 (Ⅰ)求证:数列是等差数列;(Ⅱ)求数列的通项公式; (Ⅲ)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由.
设二次函数在区间上的最大值、最小值分别是,集合. (Ⅰ)若,且,求的值; (Ⅱ)若,且,记,求的最小值.
如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求在的延长线上,在的延长线上,且对角线过点.已知米,米。 (1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围; (2)若(单位:米),则当,的长度分别是多少时,花坛的面积最大?并求出最大面积.
如图,在中,边上的中线长为3,且,. (Ⅰ)求的值;(Ⅱ)求边的长.
已知,. (1)若,求的值; (2)若,求的值.