.“校园手机”现象越来越受到社会的关注.小丽在“统计实习”活动中随机调查了学校若干名学生家长对“中学生带手机到学校”现象的看法,统计整理并制作了如下的统计图:
(1)求这次调查的家长总数及家长表示“无所谓”的人数,并补全图①;(2)求图②中表示家长“无所谓”的圆心角的度数;(3)从这次接受调查的家长中,随机抽查一个,恰好是“不赞成”态度的家长的概率是多少
先化简,再求值:,其中,
因式分解:① ②
计算:① ②
已知菱形的对角线和相交于点,,, (1)菱形的对角线和具有怎样的位置关系? (2)若沿两条对角线把菱形剪开,分成四个三角形,利用这四个三角形可拼成一个可以证明勾股定理的图形.请你画出示意图,并证明勾股定理. (3)若,,求 ①菱形的边长和菱形的面积.(直接写出结论) ②求菱形的高.(直接写出结论)
图形的操作过程(本题中四个矩形的水平方向的边长均为a,竖直方向的边长均b): ●在图1中,将线段A1A2向右平移1个单位到B1B2,得到封闭图形A1A2B2B1(即阴影部分); ●在图2中,将折线A1A2A3向右平移1个单位到B1B2B3,得到封闭图形A1A2A3B3B2B1(即阴影部分). (1)在图3中,请你类似地画一条有两个折点的线,同样向右平移1个单位,从而得到一个封闭图形,并用斜线画出阴影; (2)请你分别写出上述三个图形中除去阴影部分后剩余部分的面积: S1=__________,S2=__________,S3=__________. (3)联想与探索 如上图,在一块矩形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是1个单位),请你猜想空白部分表示的草场地面积是多少?并说明你的猜想是正确的.