已知某几何体的直观图和三视图如下图所示, 其正视图为矩形,左视图为等腰直角三角形,俯视图为直角梯形.(1)证明:平面;(2)求二面角的余弦值;(3)为的中点,在线段上是否存在一点,使得平面,若存在,求出的长;若不存在,请说明理由.
已知点A,动点在双曲线上运动,且,求点P的轨迹方程.
过抛物线的焦点F作倾斜角为的直线交抛物线于A、B两点,若线段AB的长为8,求此抛物线的方程.
若直线与双曲线有且仅有一个公共点,求实数的值.
已知,函数. (1)设曲线在点处的切线为,若与圆相切, 求的值; (2)求函数的单调区间;(3)求函数在[0,1]上的最小值。
已知数列的前n项和(n为正整数)。 (Ⅰ)令,求证数列是等差数列,并求数列的通项公式; (Ⅱ)令,比较与的大小,并证明。(本小题满分14分)