如图,曲线C1是以原点O为中心,F1、F2为焦点的椭圆的一部分,曲线C2是以原点O为顶点,F2为焦点的抛物线的一部分,是曲线C1和C2的交点.(Ⅰ)求曲线C1和C2所在的椭圆和抛物线的方程;(Ⅱ)过F2作一条与x轴不垂直的直线,分别与曲线C1、C2依次交于B、C、D、E四点,若G为CD中点,H为BE中点,问是否为定值,若是,求出定值;若不是,请说明理由.
已知椭圆的离心率为,并且直线是抛物线的一条切线。(1)求椭圆的方程(2)过点的动直线交椭圆于、两点,试问:在直角坐标平面上是否存在一个定点,使得以为直径的圆恒过点?若存在求出的坐标;若不存在,说明理由。
已知四棱锥—的底面是正方形,⊥底面,是上的任意一点。(1)求证:平面(2)设,,求点到平面的距离(3)求的值为多少时,二面角——的大小为120°
甲、乙两名篮球运动员互不影响地在同一位置投球,命中率分别为与,且乙投球2次均未命中的概率为。(1)求乙投球的命中率。(2)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望。
有一边长为的正方形铁片,铁片的四角截去四个边长为的小正方形,然后做成一个无盖方盒。(1)试把方盒的容积表示成的函数;(2)求多大时,做成方盒的容积最大。
已知数列,,,……,,……(1)计算,,,(2)根据(1)中的计算结果,猜想的表达式并用数学归纳法证明你的猜想。