已知A、D分别为椭圆E: 的左顶点与上顶点,椭圆的离心率,F1、F2为椭圆的左、右焦点,点P是线段AD上的任一点,且的最大值为1 .(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OAOB(O为坐标原点),若存在,求出该圆的方程;若不存在,请说明理由;(3)设直线l与圆相切于A1,且l与椭圆E有且仅有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
在平面直角坐标系中,点到点的距离的倍与它到直线的距离的倍之和记为.当点运动时,恒等于点的横坐标与之和, 求点的轨迹;
已知双曲线的离心率为,点是双曲线的一个顶点. (1)求双曲线的方程; (2)经过的双曲线右焦点作倾斜角为30°直线,直线与双曲线交于不同的两点,求的长.
已知命题:,命题: 对任何R,都有,命题且为假,或为真,求实数的取值范围.
已知集合,,则“,或”是“”的什么条件?
已知函数,且,, (1)试问是否存在实数,使得在上为减函数,并且在上为增函数,若不存在,说明理由. (2)当时,求的最小值.