.(本小题10分)如图,在四棱锥中,底面是正方形,侧棱⊥底面,.是的中点.(1)证明∥平面;(2)证明:⊥平面.
已知不等式的解集为. (Ⅰ )求的值; (Ⅱ )若,求的取值范围.
在极坐标系中,圆的极坐标方程为.现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系. (Ⅰ)求圆的直角坐标方程; (Ⅱ)若圆上的动点的直角坐标为,求的最大值,并写出取得最大值时点P的直角坐标.
已知线性变换:对应的矩阵为,向量β. (Ⅰ)求矩阵的逆矩阵; (Ⅱ)若向量α在作用下变为向量β,求向量α.
已知函数. (Ⅰ)当时,求曲线在原点处的切线方程; (Ⅱ)当时,讨论函数在区间上的单调性; (Ⅲ)证明不等式对任意成立.
已知,曲线上任意一点分别与点、连线的斜率的乘积为. (Ⅰ)求曲线的方程; (Ⅱ)设直线与轴、轴分别交于、两点,若曲线与直线没有公共点,求证:.