本题共有2个小题,第1小题满分6分,第2个小题满分8分。某加油站拟造如图所示的铁皮储油罐(不计厚度,长度单位:米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为3千元.设该储油罐的建造费用为千元.(1)写出关于的函数表达式,并求该函数的定义域;(2)求该储油罐的建造费用最小时的的值.
(本小题满分13分) 已知数列{ an }的前n项和Sn满足,Sn=2an+(—1)n,n≥1。 (1)求数列{ an }的通项公式; (2)求证:对任意整数m>4,有
(本小题满分13分) 已知函数 (1)若且函数的值域为,求的表达式; (2)设为偶函数,判断能否大于零?并说明理由。
(本小题满分13分)在△ABC中,满足的夹角为,M是AB的中点 (1)若,求向量的夹角的余弦值 (2)若,在AC上确定一点D的位置,使得达到最小,并求出最小值。
(本小题满分12分)已知函数. (1)求的单调区间; (2)求在上的最大值
(本小题满分12分) 已知二次函数f(x) 对任意x∈R,都有f (1-x)="f" (1+x)成立,设向量a="(sinx,2)," b=(2sinx,),c=(cos2x,1),d=(1,2)。 (1)分别求a·b和c·d的取值范围; (2)当x∈[0,π]时,求不等式f(a·b)>f(c·d)的解集。